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ABSTRACT
Although video recommender systems have become the predomi-
nant way for people to obtain video information, their performances
are far from satisfactory in that (1) the recommended videos are of-
ten mismatched with the users’ interests and (2) the recommenda-
tion results are, in most cases, hardly understandable for users and
therefore cannot persuade them to engage. In this paper, we attempt
to address the above problems in data representation level, and aim
to learn a common attributed representation for users and videos in
social media with good interpretability, stability and an appropri-
ate level of granularity. The basic idea is to represent videos with
users’ social attributes, and represent users with content attributes
of videos, such that both users and videos can be represented in
a common space concatenated by social attributes and content at-
tributes. The video recommendation problem can then be converted
into a similarity matching problem in the common space. Howev-
er, it is still challenging to balance the roles of social attributes
and content attributes, learn such a common representation in s-
parse user-video interactions and deal with the cold-start problem.
In this paper, we propose a REgularized Dual-fActor Regression
(REDAR) method based on matrix factorization. In this method,
social attributes and content attributes are flexibly combined, and
social and content information are effectively exploited to alleviate
the sparsity problem. An incremental version of REDAR is de-
signed to solve the cold-start problem. We extensively evaluate the
proposed method for video recommendation application in real so-
cial network dataset, and the results show that, in most cases, the
proposed method can achieve a relative improvement of more than
20% compared to state-of-the-art baseline methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models
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1. INTRODUCTION
Recommender systems are becoming increasingly important be-

cause of the overload of information brought about by today’s In-
ternet. Video recommender systems are required, in particular, be-
cause of the high timing costs of watching videos. Netflix reported
that 75% of the content that people watch follows a recommenda-
tion. These video recommender systems therefore play the role of
a bridge between users and videos, where a common representa-
tion of videos and users is required to measure the matching de-
gree of user-video pairs. Developing an interpretable and station-
ary common representation method for both videos and users is of
paramount significance for effective and efficient video recommen-
dation.

In the literature, collaborative filtering (CF) has achieved great
success in recommender systems. User-based CF methods repre-
sent users with videos as features, such that user-video matching
can be conducted in the item space. In contrast, item-based CF
methods represent videos with users as features and calculate the
matching degree of user-video pairs in user space. However, the
performances of these methods are seriously affected by the spar-
sity of the user-video collaborative matrix; they are unable to infer
meaningful information about videos (or users) that lack interac-
tions with different users (or videos). More recently, matrix fac-
torization based CF has become more popular. It assumes a com-
mon low-dimensional latent factor representation for both users and
items such that the user-item matching degree is measurable in the
latent space. However, the latent factors are hardly interpretable,
which makes it difficult to generalize the learned representations
to new data. In addition, all CF methods suffer from the cold s-
tart problem, i.e., making recommendations for new users or new
videos difficult, owing to a lack of information in the collabora-
tive matrix. To address this, content-based video recommendation
methods are currently being investigated, where users’ interests and
preferences are represented in detail by either content features or
metadata (for example, title, or tags) of videos. However, the low-
level representation is often too specific to capture users’ broad in-
terests [6]. Representing videos and users in a common space with
good interpretability, stability, and appropriate levels of granularity
is still an open problem.

Fortunately, the emergence of social media brought us with vast
amount of users, videos and the observable interaction behaviors
between users and videos. With the Homophily hypothesis1, it is
therefore possible and reasonable to extract a middle-level repre-

1Homophily is the tendency of individuals to associate and bond
with others who are similar. It is often used to account for the sim-
ilar behaviors of similar people towards new ideas or innovations,
which implies that user-item interactions can be predicted by simi-
larity matching of users and items in a common space.
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Figure 1: The framework of attributed representation based video recommendation.

sentation layer from the social-enriched environment to represent
both videos and users. Attributes, which lie in the middle of low-
level features and high-level semantics, have been intensively in-
vestigated in recent years to characterize visual contents. Further-
more, it has been demonstrated that such a middle-level represen-
tation is an appropriate level of granularity for various application
scenarios. It is natural and straightforward to extract content at-
tributes from videos to depict their contents. In addition, we can
extract social attributes from user profiles to capture users’ charac-
teristics in social aspects. Through the interactions between users
and videos, the video content attributes and user social attributes
are no longer isolated. If a video is watched by a number of user-
s, the social attributes of the users who watched the video can be
aggregated into the social attributes of the video. For example, in
Figure 1, a video can be represented by social attributes such as
"after 80s" and "female," which means that the video is more prob-
ably liked by after 80s female users. Similarly, for a user having
watched a number of videos, the content attributes of the videos
that are watched by the user can be aggregated into the content at-
tributes of the user. Figure 1 shows that the user can be represented
by content attributes such as "baby" and "cute," which means that
the user is more likely to watch videos with such content. In this
way, both social attributes and content attributes can be used as the
common representation for user-video matching, and such repre-
sentations are interpretable (compared with latent space models),
stable (compared with CF models), and have an appropriate level
of granularity.

However, it is still challenging to make video recommendations
in the social and content attribute space.

(1) The balance of social attributes and content attributes.
User-video interactions are often triggered by both long-term pref-
erence and instantaneous interest, alongside the general topic or
style of the video, or detailed elements of the video content that
attracted the user. Comparatively, social attribute-based represen-
tation is more stable and general. Users’ social attributes are often
abstract (e.g., after 80s) and remain unchanged for quite a long
time. Although videos dynamically propagate among users with
different social attributes, their aggregated social attributes are un-
likely to dramatically vary over time. In contrast, users’ content

attributes can capture user preferences in detail and are therefore
more dynamic with users watching videos with different content
attributes. A method which integrates a user’s content attributes in-
corporating different aspects of a user-video interaction mechanism
requires a subtle design.

(2) The sparsity of user-video interactions. Extracting both a
user’s social attributes from user profiles and content attributes for
videos from their surrounding texts is straightforward. However,
in order to learn social attributes for videos and vice versa, user-
video interactions play an important bridging role. Nevertheless,
the high volumes of users and videos intrinsically determine the
sparsity of user-video interactions. Therefore, effective priors are
required to alleviate the sparsity problem. Embedding rich infor-
mation, in addition to user-video interactions in social media, into
the recommendation framework is a critical problem.

(3) The cold-start problem. Making recommendations for cold
users (who have not watched any videos) and cold videos (that have
not been watched by any users), the so-called cold-start problem,
always proves difficult to overcome in video recommender systems.
As mentioned above, we rely on user-video interactions to bridge
users and content attributes, as well as videos and social attributes.
For new users and videos, we need an effective method to link them
with other active users and popular videos, whose attribute-based
representations have been learned from rich information.

In this paper, we analyze the significance of social attributes for
videos and content attributes for users. We find that most videos
can obtain a number of representative social attributes by aggre-
gating the social profiles of the users who watched them. This is
also the case for users and content attributes. Furthermore, we find
that videos having similar content are prone to have similar social
attributes, and users having social relationships are prone to have
similar content attributes. These interesting discoveries imply the
possibility of video recommendation in social and content attribute
space. Thus we further propose a REgularized Dual fActor Re-
gression (REDAR) method based on matrix factorization. In par-
ticular, with the aim of predicting user-video interactions, we fac-
torize the observed user-video interactions into two factors, which
respectively correspond to the matching degree of user-video pairs
in both social attribute space and content attribute space. These t-



wo factors are flexibly combined to optimize the approximation of
the user-video interactions. In order to alleviate the sparsity prob-
lem of user-video interactions, we use video content similarities to
regularize the similarities between the social attributes of videos,
and we also use social relationships to regularize the similarities
between the users’ content attributes. For new users and videos,
we propose a cold-start strategy, where new videos (or users) are
efficiently linked with other videos (or users) by content similar-
ity (or social relationship). We evaluate our proposed method on
real online social media data collected from a Twitter-style web-
site. The experiments on the real data validate our hypotheses and
demonstrate the superiority of REDAR for video recommendation.

It is worthwhile to highlight the key contributions of this paper:
(1) In contrast with the representation methods in traditional rec-

ommender systems, we attempt to represent (a) videos with so-
cial attributes and (b) users with content attributes by harvesting
video propagation traces among users and users’ interactive be-
havior with videos. The resulting common attribute-based repre-
sentation is interpretable with an appropriate level of granularity,
in which videos can be effectively and efficiently recommended to
users by directly measuring the user-video similarities (see Sections
1 and 2).

(2) We validate the rationality for representing videos (or users)
with social (or content) attributes using data statistics in a real so-
cial network dataset, and find the patterns of these representations
among videos with similar visual contents and users with social
relationships. These discoveries pave the way for recommending
videos to users in the representation space with common attributes
(see Section 3).

(3) We propose our REDAR method based on matrix factoriza-
tion to predict user-video interaction behavior and present video
recommendations accordingly. The model can attain a superior
trade-off between social attribute-based representation and content
attribute-based representation, and incorporate flexible regularizers
from social and visual information to alleviate the sparsity problem.
In addition, a cold-start strategy for REDAR is proposed, which can
also be used to efficiently deal with online and incremental data
(see Section 4).

(4) We extensively evaluate the proposed methods using a rea-
sonable scale real dataset. The experimental results show that our
proposed REDAR method can significantly and consistently out-
perform other state-of-the-art baseline methods. Several variants
of REDAR are compared and analyzed to demonstrate the rational-
ity of the design (see Section 5).

2. RELATED WORK
In this section, we will briefly survey the related work, introduce

the corresponding taxonomies, and position the uniqueness of this
paper.

(1) Traditional Recommendation Methods
Content-based filtering and CF have been widely used to help

users discover the most valuable information to them. Content-
based filtering introduces the basic idea of studying the item con-
tent for the ranking problem. With the emergence of topic model-
ing techniques such as LDA [3], recent content-based approaches
[21] rank candidate items by how well they match the topic inter-
est of the user as their preference. These methods represent de-
tailed users and items, enabling them to recommend similar items
to what the user has previously adopted. CF methods, consisting
of memory-based and model-based methods, are widely used. The
memory-based approaches [20] calculate the similarity between al-
l users based on their ratings of items. They represent users (or
items) by the item-sets (or user-sets), which are often unstable and

can only obtain good performance for active users or popular items.
The model-based methods learn a model based on patterns recog-
nized in the ratings of users. Several matrix factorization methods
[13] have recently been proposed. The matrix approximation mod-
els all focus on representing the user-item rating matrix with low-
dimensional latent vectors. These learned latent representations are
hardly interpretable and are therefore difficult to generalize to new
data. Although these methods have achieved success in real ap-
plications, the representation methods they adopt limit space for
improvement.

(2) Social Recommendation
Recognizing that influence is a subtle force that governs the dy-

namics of social networks, influence-based recommendation [14]
involves interpersonal influence into social recommendation cases.
Trust-based approaches[8] exploit the trust network among users
and make recommendations based on the ratings of users who are
directly or indirectly trusted. [9][11] proposed a probabilistic fac-
tor analysis framework, which fuses users’ preference and social
influence together. Furthermore, [10] investigated the social rec-
ommendation problem in a multiple domain setting. Most of these
works are based on traditional content-based filtering or CF-based
filtering methods, and their common goal is to embed social in-
formation into traditional methods to improve the recommendation
accuracy. However, few authors have targeted the problem of how
to learn a new common representation for users and items in so-
cial networks, which is indeed feasible and important for boosting
social recommendation performance.

(3) Video Recommendation
Video recommendation plays an important role in delivering videos

to users. The most well-known real video recommendation system
is running on YouTube, where personalized sets of videos are rec-
ommended to users based on their activities on the site [5]. The
recommendation system is one of the most important techniques
to find videos [29], preceded by video searching. Compared with
YouTube’s recommendation system, which only considers user rat-
ings and user-video interaction information, the following research
on video recommendation attempted to incorporate more aspects
of user and content information[23]. Park et al. [19] proposed to
construct user profiles as an aggregation of tag clouds and generate
recommendations according to similar viewing patterns. Bertini et
al. [2] built a demo to show how to create user profiles contain-
ing the users’ interests and apply them to a friend’s suggestion and
video recommendation. Ma et al. [16] assumed that social friends
have higher common interests and their sharing behaviors are an
important clue to enhance video recommendation. These meth-
ods pay more attention to user representation by discovering user
profiles and behavior patterns [24]. Further, Zhu et al. [30] decom-
posed the recommendation process into video representation and
recommendation generation, and represented videos with topics to
match user interests. Fu et al. [7] tackled the problem of attribute
learning for videos with sparse labels. These methods focus on
video representation, yet the representations of videos and users
are still isolated [18, 26]. Previous works focused on either user
representation or video representation, and only a few works inves-
tigated integration strategies [25, 15] by first separately processing
and then aggregating for recommendation. Our work is the first to
uniformly learn a common representation for both users and videos
in an interpretable way and with proper granularity.

(4) Attribute based Methods
Recently, attributes have aroused much interest in the research

community because attribute-based representations are in a proper
granularity to bridge low-level information and high-level seman-
tics. Khalid et al. [6] represented documents by attributes of users
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Figure 2: Distribution of users (or videos) with respect to the
number of videos they retweeted (or the number of times they
are retweeted).

who read these documents. Zhang et al. [28] used an attribute-
augmented semantic hierarchy to bridge the semantic gap and in-
tention gap. Ma et al. [17] extracted visual, audio, and linguistic
attributes for video summarization, which outperforms tradition-
al visual-only methods, while Cha et al. [4] conducted statistical
analysis on video attributes to analyze user behavior on Youtube,
giving an intuitive observation of the video sharing platform. Yu et
al. [27] regarded user behaviors as their attributes to explore large-
scale video-on-demand systems. These methods investigated at-
tribute representations either for videos or for users. However, only
a limited number of them explored the possibility of a common
attribute-based representation for both users and videos, which is
the focus of this paper.

3. PRELIMINARY STUDY
In this section, we will introduce the characteristics of the dataset

and validate the rationality of representing videos (or users) by so-
cial attributes (or content attributes).

3.1 Data Description
The dataset is collected from Tencent Weibo, a Twitter-style so-

cial network platform in China with more than 300 million users.
Video sharing is an important and popular feature of this platform.
Users proactively forward the videos from external Youtube-style
video sharing websites onto this microblog platform; the video
then propagates over the social graph. We collected these kinds
of videos with their text descriptions between June 20, 2012 and
June 26, 2012. We then selected the videos that had been retweet-
ed at least two times, collected the profiles (including demographic
information and self-labeled tags such as "after 90s," "soccer fans,"
etc.) of the users that were involved in the propagation processes
of these videos at least two times, and the social relations among
the collected users. Therefore, we have 2357 videos, 6572 users,
and 1271 social relations among the users. We show the distribu-
tion of videos with respect to the times they are retweeted, and the
distribution of users with respect to the number of videos that they
retweeted in Figure 2. It can be seen that both distributions obey
the power law, which indicates that the user-video interactions are
sparse. Thus, the dataset is adequate for simulating real application
scenarios and evaluating the performances of the proposed method
and other baselines.

3.2 Social Attributes of Videos
Here, we use a simple method to intuitively approximate the

social attribute-based representations for videos, while a formal
method will be proposed in Section 4 under the motivation of this
preliminary study. We first extract social attributes for users. The
demographic information is easily transformed into labels. For the
self-labeled tags, we filter the tags with very low or very high fre-
quency, while retaining the mid-frequency tags as labels. All these
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labels are used as the social attribute candidate set of users. For
each video, we aggregate the social attributes of the users who
retweeted the video. If the frequency of a social attribute exceed-
s 20% of the total number of users who retweeted the video, this
attribute is regarded as a valid social attribute for the video. The
distribution of videos with respect to the number of valid social at-
tributes is shown in Figure 3. It can be seen that the agglomeration
phenomenon of social attributes universally exists among videos,
which validates the hypothesis of videos being watched by users
with similar social attributes. However, the figure also shows that
most videos only have a small number of valid social attributes,
which pose a significant challenge to video recommendation based
on such a sparse representation.

There is a well-accepted belief that a user is more likely to like
videos that are similar to those videos they have watched previous-
ly. This is the fundamental hypothesis of content-based video rec-
ommendation methods. Motivated by this, we presume that videos
with similar visual contents should have similar valid social at-
tributes. To validate this, we calculate the visual content similarity
of each pair of videos (the detail method for calculating the visual
content similarity is referred to in Section 4.1) and the social at-
tribute similarity of each pair of videos, and plot the relationship
between the visual content similarity and the social attribute simi-
larity, as shown in Figure 4. It can be seen that, on average, social
attribute similarities of videos positively correlates with their vi-
sual content similarities. That is, videos that have similar visual
contents are more likely to have similar social attributes.



0

10

20

30

40

50

60

70

80

0 500 1,000 1,500 2,000 2,500 3,000

# 
U
se
rs

# Valid Content Attributes

Figure 5: Distribution of users with respect to the number of
valid content attributes.

3.3 Content Attributes of Users
We deal with the content attributes of users in a similar approach.

We first extract content attributes for videos. Almost all videos have
text descriptions to indicate the high-level semantics of the video
contents. These text descriptions are segmented into words, and
after filtering the words with very low or very high frequency, we
retain the mid-frequency words as labels. All these labels are used
as the content attribute candidate set of videos. For each user, we
aggregate the content attributes of the videos that the user watched.
If the frequency of a content attribute exceeds 20% of the total num-
ber of videos that the user watched, this attribute is regarded as a
valid content attribute for the user. The distribution of videos with
respect to the number of valid social attributes is shown in Figure
5. Similarly, the agglomeration phenomenon of content attributes
universally exists among users, yet the valid content attributes for
each user are very sparse.

The homophily hypothesis is a commonly accepted hypothesis in
sociology to interpret the interpersonal relations within social net-
works. It presumes that users with similar demographic informa-
tion or attributes are more prone to establish social relations. In our
case, we use the hypothesis conversely and presume that users with
social relations are more likely to have similar content attributes.
To validate this, we measure the content attribute similarities of all
pairs of users, and calculate the average and standard deviation of
content attribute similarity for the pairs of users with and without
social relations, respectively. We show the results in Figure 6, and
it can be seen that, on average, the content attribute similarities of
users who are socially linked are much higher than those of users
without social relations.

We have now validated the important hypotheses in this work,
including (1) the agglomeration phenomenon exists in social at-
tributes among videos and content attributes among users; (2) videos
with similar visual contents are more likely to have similar social
attributes; and (3) users with social relations are more likely to
have similar content attributes. The first one is fundamental for
representing videos (or users) with social attributes (or content at-
tributes), while the latter two provide important clues for alleviating
the sparsity and cold-start problem in attribute-based representation
video recommendation.
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4. THE REDAR MODEL

4.1 Problem Formulation
Suppose that we have collected abundant information from a so-

cial media platform, with large sets of users U and videos V with
M = |U| and N = |V|. We denote the watching relationship
matrix as W ∈ {0, 1}M×N , with its (u, v)-th entry

Wuv =

{
1, if user u watched video v;
0, otherwise. (1)

However, in real cases, most of the elements in W are zero be-
cause of the sparse interactions between users and videos. Thus,
in order to focus more on the valid elements, we propose to only
measure the approximation loss on observed elements on W. To
formulate this, we introduce the masking matrix Y ∈ {0, 1}M×N ,
with its (u, v)-th entry

Yuv =

{
1, if user u’s behavior on video v is observed;
0, otherwise. (2)

where observed behaviors could be either positive or negative. Please
refer to Section 5.1 for details on how to determine whether an en-
try is observed.

We denote the the friendship relationship matrix as R ∈ {0, 1}M×M ,
with its (u1, u2)-th entry

Ru1u2 =

{
1, if user u1 is a friend of user u2;
0, otherwise. (3)

We denote the content similarity matrix as C ∈ [0, 1]N×N , with its
(v1, v2)-th entry

Cv1v2 = e−distance(v1,v2) (4)

where distance(v1, v2) is measured by visual features. Given two
videos, keyframes are extracted respectively, with SIFT descriptors
pre-extracted on these keyframes, so that it won’t consume a lot of
online calculations. Keyframes from the two videos are matched
to count the matched number of descriptors, and the total ratio of
matched descriptors is used as the video distance [12].

Besides visual features, tags are also considered in social media
to describe videos and users. Tags of a video come from accompa-
nying text of the video. The video tag set is denoted as T V with
P = |T V |, and the relationships of videos and video tags are de-
noted by a matrix V ∈ [0, 1]N×P , with

Vv,t = TFv(v, t) · IDFv(t) (5)



where TFv is calculated on video v’s accompanying text, and IDFv
is calculated on all video accompanying texts. Tags of a user can be
extracted from the user’s profile and his/her self-labeling tags. The
user tag set is denoted as T U with Q = |T U |, and the relationship
of users and user tags is denoted by a matrix U ∈ [0, 1]M×Q, with

Uu,t = TFu(u, t) · IDFu(t) (6)

where TFu is calculated on user u’s profile, and IDFu is calculat-
ed on all user profiles.

With all these matrices as input, according to the observations in
Section 3, we can define our targeting matrices. The first targeting
matrix is E ∈ [0, 1]M×P , which links users with videos’ attributes.
The second targeting matrix is F ∈ [0, 1]N×Q, which links videos
with users’ social attributes. In order to learn the targeting matri-
ces from the input information, we use the following principles to
define our objective function:

• User-video matching with both social attributes and content
attributes should be consistent with the real user-video inter-
actions.
• User-user similarity with content attributes should be consis-

tent with user friendship.
• Video-video similarity with social attributes should be con-

sistent with videos’ visual similarity.
• Both social attributes and content attributes should be sparse.

Therefore, the objective function is defined as

(E,F) = arg min
E,F

(||Y � (αEVT + (1− α)UFT −W)||2F

+ λ1||EET −R||2F + λ2||FFT −C||2F (7)
+ λ3||E||1 + λ4||F||1)

where α ∈ [0, 1] is a weighting factor between video tags and us-
er tags, and λ1, λ2, λ3, λ4 are non-negative parameters less than
1, with λ1 weighting for user relationships and λ2 weighting for
visual similarities. � stands for an element by element multiply
operation. Although there are five parameters to tune in this model,
alpha, λ1 and λ2 are more important, and the result is not sen-
sitive with λ3 and λ4. In this objective function, both social at-
tribute based representation and content attribute based representa-
tion are flexibly integrated, and rich side information are embedded
into regularizers to alleviate the sparsity problem. Thus we de-
note the proposed method as REgularized Dual-fActor Regression
(REDAR).

4.2 The Model Solution
To solve the problem, we apply Iterative Shrinkage Thresholding

Algorithm [1]. To simplify the description, we define

f(E,F) =||Y � (αEVT + (1− α)UFT −W)||2F (8)

+ λ1||EET −R||2F + λ2||FFT −C||2F

g(E,F) = λ3||E||1 + λ4||F||1 (9)

So that the iterative formulas to solve the model are

E(k) = Tλ3t
E
k

(E(k−1) − tEk∇Ef(E(k−1),F(k−1))) (10)

F(k) = Tλ4t
F
k

(F(k−1) − tFk∇Ff(E(k−1),F(k−1))) (11)

where E(k), F(k) are the k-th round of results of our targeting ma-
trices E and F. tFk and tEk are step sizes. The function Tλ is defined
as

Tλ(x) = (|x| − λ)+sgn(x) (12)

In order to solve∇Ef and∇Ff , we have

f(E,F) = f1(E,F) + λ1f2(E) + λ2f3(F) (13)

where

f1(E,F) = ||Y � (αEVT + (1− α)UFT −W)||2F (14)

f2(E) = ||EET −R||2F (15)

and

f3(F) = ||FFT −C||2F (16)

By solving their derivations, we get

∂f1

∂E
= 2α(Y � (αEVT + (1− α)UFT −W))V (17)

∂f1

∂F
= 2(1−α)(YT �(αEVT +(1−α)UFT −W)T )U (18)

∂f2

∂E
= 4(EET −R)E (19)

∂f3

∂F
= 4(FFT −C)F (20)

Therefore, we get

∇Ef(E,F) =
∂f1

∂E
+ λ1

∂f2

∂E
(21)

∇Ff(E,F) =
∂f1

∂F
+ λ2

∂f3

∂F
(22)

More details about the flow of the algorithm is presented in Al-
gorithm 1.

Algorithm 1 Iterative Solution of REDAR Model.
Input: W, R, C, U, V

tEk , tFk , λ1, λ2, λ3, λ4

Output: E, F
1: Initialize: E(0) = WV, F(0) = WTU
2: for k = 1, 2, . . . do

3: Calculate ∂f
(k−1)
1
∂E

, ∂f
(k−1)
1
∂F

, ∂f
(k−1)
2
∂E

, ∂f
(k−1)
3
∂F

4: ∇Ef(E(k−1),F(k−1)) =
∂f

(k−1)
1
∂E

+ λ1
∂f

(k−1)
2
∂E

5: ∇Ff(E(k−1),F(k−1)) =
∂f

(k−1)
1
∂F

+ λ2
∂f

(k−1)
3
∂F

6: E(k) = Tλ3t
E
k

(E(k−1) − tEk∇Ef(E(k−1),F(k−1)))

7: F(k) = Tλ4t
F
k

(F(k−1) − tFk∇Ff(E(k−1),F(k−1)))

8: end for
9: return E(k),F(k)

With the optimized results of E and F, which are denoted as Ê
and F̂, respectively, we can estimate the user-video interactions by

Ŵ = αÊVT + (1− α)UF̂T (23)

Time complexity analysis. The time complexity of the algo-
rithm depends on the matrix calculations and number of iterations.
Since both matrix linear combinations and lasso take linear time,
we only need to consider matrix calculation of the gradients. More
specifically, the running time is

T (k,M,N, P,Q) (24)

=O(k)(O(
∂f1

∂E
) +O(

∂f1

∂F
) +O(

∂f2

∂E
) +O(

∂f3

∂F
))

=O(k(M(P +Q)N +MNP +MNQ+MPM +NQN))

=O(k((M +N)(M +N)(P +Q)−MMQ−NNP ))

≤O(k(M +N)(||E||0 + ||F||0 + ||U||0 + ||V||0))



We use MP , NQ, MQ, and NP to denote the 0-norm of E, F,
U, and V, respectively, which stands for the number of non-zero
elements in the matrix. That is to say, our algorithm can compute
||E||0 + ||F||0 and scan ||U||0 + ||V||0 elements with each in time
of O(k(M + N)) on average. Further, with the scope matrix Y,
the matrix calculation can avoid the calculation of most elements,
which results in a small const factor of the time complexity.

4.3 Incremental REDAR Model
Our model can also handle the cold-start problem with an in-

cremental algorithm. To deal with new users and new videos, we
do not learn the entire E and F, but only focus on the incremen-
tal part of the data. More specifically, suppose we have a set of
new users ∆U with ∆M = |∆U| and a set of new videos ∆V
with ∆N = |∆V|. We do not know their watching histories, i.e.,
the relationships between the new users and the new videos. We
represent the friendship of the new users and all users by a ma-
trix ∆R ∈ {1, 0}(M+∆M)×∆M , with the same entity meaning to
R. We represent the visual feature similarity of new videos and all
videos as a matrix ∆C ∈ [0, 1](N+∆N)×∆N , with the same entity
meaning to C. We denote new video tag set by ∆V ∈ [0, 1]∆N×P ,
with the same entity meaning to V. We denote new user tag set
by ∆U ∈ [0, 1]∆M×Q, with the same entity meaning to U. Al-
so, we denote our targeting matrices by ∆E ∈ [0, 1]∆M×P and
∆F ∈ [0, 1]∆N×Q, with the same entity meaning to E and F,
respectively.

Since the missing of new user-video watching relationship, we
only need to focus on the friendship and visual feature similarity
terms. Thus we get the following objective function

(∆E,∆F) = arg min
∆E,∆F

λ1||
[

E
∆E

]
×∆ET −∆R||2F (25)

+λ2||
[

F
∆F

]
×∆FT −∆C||2F

+λ3||∆E||1 + λ4||∆F||1

which can be solved in a similar way with Equation 7 as follows.
We define

∆f(∆E,∆F) = λ1||
[

E
∆E

]
×∆ET −∆R||2F (26)

+ λ2||
[

F
∆F

]
×∆FT −∆C||2F

∆g(∆E,∆F) = λ3||∆E||1 + λ4||∆F||1 (27)

So that the iterative solution is:

∆E(k) = Tλ3t
∆E
k

(∆E(k−1) − t∆Ek ∇∆Ef(∆E(k−1),∆F(k−1)))

(28)

∆F(k) = Tλ4t
∆F
k

(∆F(k−1) − t∆Fk ∇∆Ff(∆E(k−1),∆F(k−1)))

(29)
To solve∇∆Ef and∇∆Ff , we have

∆f(∆E,∆F) = λ1∆f1(∆E) + λ2∆f2(∆F) (30)

where

∆f1(∆E) = ||
[

E
∆E

]
×∆ET −∆R||2F (31)

∆f2(∆F) = ||
[

F
∆F

]
×∆FT −∆C||2F (32)

By solving their derivations, we get

∂∆f1

∂∆E
= 2(

[
E

∆E

]
×∆ET −∆R)T

[
E

2∆E

]
(33)

∂∆f2

∂∆F
= 2(

[
F

∆F

]
×∆FT −∆C)T

[
F

2∆F

]
(34)

Therefore, we get

∇∆Ef = λ1
∂∆f1

∂∆E
(35)

∇∆Ff = λ2
∂∆f2

∂∆F
(36)

With the optimized ∆E and ∆F, which are denoted by ∆Ê and
∆F̂, respectively, we can estimate the user-video watching rela-
tionship as ∆Ŵ∆U ∈ [0, 1]∆M×(N+∆N) and ∆Ŵ∆V ∈ [0, 1](M+∆M)×∆N

for new users and new videos, respectively, where

∆Ŵ∆U = α∆Ê

[
V

∆V

]T
+ (1− α)∆U

[
F̂

∆F̂

]T
(37)

∆Ŵ∆V = α

[
Ê

∆Ê

]
∆VT + (1− α)

[
U

∆U

]
∆F̂T (38)

Note that ∆Ŵ∆U and ∆Ŵ∆V are consistent in their common el-
ements.

Time complexity analysis. With the entire data, we have to
process matrices with sizes MN , MQ, MP , NQ, and NP . With
the incremental data, we only need to process matrices with sizes
∆M × Q, ∆M × P , ∆N × Q, and ∆N × P . When ∆M �
M and ∆N � N , the incremental algorithm is much faster than
a re-calculation approach. More detailedly, the time complexity
of the incremental algorithm can be solved in a similar way with
Algorithm 1.

T (k,M,N,∆M,∆N,P,Q) (39)

=O(k)(O(
∂∆f1

∂∆E
) +O(

∂∆f2

∂∆F
)) = O(k(MP∆M +NQ∆N))

=O(k(M × ||∆E||0 +N × ||∆F||0))

which keeps the low average computation time for each output ele-
ment.

5. EXPERIMENTS
In this section, we will present the empirical study results on the

REDAR method for video recommendation.

5.1 Experimental Settings
Training and Testing. For all recommendation methods in a

social network environment, there is an inevitable problem of un-
observable negative samples. In W, Wij = 1 is used to indicate
that the user i was interested in video j. However, Wij = 0 does
not necessarily indicate that user i was not interested in video j,
but rather user i never received and saw video j. To guarantee that
all the 0-entries are correct signals that reflect the users decision
to reject retweeting the videos after seeing them, we estimate the
online sessions of users according to their behaviors reflected by
the 1-entries of W as in [9]. We suppose that the users should be
able to see all the videos that they received during online sessions.
For example, if a user retweets a video at time t, then we suppose
that the user can see all the videos they received from their friends
during [t−∆t, t+∆t]. In our case, ∆t is set to five minutes. Thus,



Wij = 0 is valid only if video j is received by user i during their
online session, which is controlled by Y. We randomly select 80%
of the observed entries in W as training data, and use the remain-
ing entries as testing data. The random selection is conducted 10
times, and the average results are reported.

Groundtruth. According to the above training and testing s-
trategy, the testing entries are in actual known. Therefore, we use
the actual value of these entries as the ground truth to evaluate the
testing performance.

Evaluation Criteria.In the following experiments, we use the
RMSE (Root Mean Square Error) and MAE (Mean Average Error)
to calculate the reconstruction loss of W on testing entries, which
evaluates the prediction performance in the value aspect. We also
evaluate the ranking performance using Kendall’s and Spearman’s
ranking coefficients. Finally, we calculate the Precision@K to eval-
uate the prediction accuracy of the top recommended videos, which
is important in real recommendation applications.

5.2 Baselines
In order to demonstrate the advantages and characteristics of the

proposed method, we implemented the following four state-of-the-
art methods and five variants of REDAR.

• UserCF. Implemented according to [22], where only user-
video interaction information is used.

• ItemCF. Implemented according to [20], where only user-
video interaction information is used.

• SVD-based CF. Implemented according to [13], where only
user-video interaction information is used.

• User-Label-Item. Implemented according to [6]. A video
is represented by aggregating the labels of the users who
watched the video, and the video recommendation is con-
ducted by matching video label representation and user la-
bels.

• REDAR-SocialAttribute2. Implemented by setting α = 1 in
Equation 7.

• REDAR-ContentAttribute. Implemented by setting α = 0 in
Equation 7.

• REDAR-SocialRegularizer. Implemented by setting λ1 = 0
in Equation 7.

• REDAR-ContentRegularizer. Implemented by setting λ2 =
0 in Equation 7.

• REDAR-LassoRegularizer. Implemented by setting λ3 =
λ4 = 0 in Equation 7.

5.3 Parameters Setting
We have five parameters in REDAR in total. α is the trade-off

parameter for balancing social attribute-based representation and
content attribute-based representation. λ1−λ4 respectively control
the weight of the social relation prior, the visual content prior, and
the sparse prior on the social attributes of the videos and the content
attributes of the users. For the parameter setting, we use grid search
to obtain the optimal parameters. To demonstrate the importance of
both social attributes and content attributes, we show how α affects
the performance of REDAR in Figure 7. It can be seen that the
RMSE of testing data significantly varies with different α values,
2In all variants of REDAR, "-" means "minus".
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Figure 7: The parameter tuning of α to balance social at-
tributes and content attributes.

which indicates the importance of subtly balancing social attributes
and content attributes. The proposed method attains the best per-
formance when α = 0.3, which also indicates that, comparatively,
the social attribute-based representation is more effective for video
recommendation, while the role of content attributes cannot be ig-
nored.

5.4 Video Recommendation Performances
Firstly, we evaluate the prediction accuracy of the proposed method

with the measures including prediction errors (MAE and RMSE)
and ranking coefficients (Kendall and Spearman). As shown in
Table 1, the proposed REDAR method achieves the best perfor-
mance across all measures. In addition, the relative improvement
of REDAR from other baseline methods is significant. For exam-
ple, in RMSE, REDAR achieves 25% relative improvement com-
pared to the best baseline method User-based Representation. By
comparing the results of baseline methods and REDAR, we arrive
at the following observations.

MAE RMSE Kendall Spearman
UserCF 0.3664 0.5744 0.5430 0.5961
ItemCF 0.3958 0.6067 0.5082 0.5578
SVD-CF 0.3204 0.5412 0.5858 0.6360

User-Label-Item 0.3104 0.5366 0.6189 0.6910
REDAR 0.2345 0.4299 0.7113 0.8539

Table 1: Video recommendation performances.

(1) UserCF, ItemCF and SVD-based CF depend only on the col-
laborative matrix information, yet SVD-based CF performs much
better than UserCF and ItemCF. The significant improvement should
be attributed to the learned latent representation for users and videos,
which is more optimal than item-based or user-based representation
in approximating user-video interactions.

(2) The User-Label-Item method performs better than SVD-based
CF. The main reason is that the common representation of items
and users learned in the User-Label-Item method is interpretable
and stationary. Another possible explanation is that User-Label-
Item method incorporates richer information than SVD-based CF,
such as the user profiles.

(3) Although the ultimate goal of both REDAR and User-Label-
Item is to learn a common representation of videos and users with
good interpretability, stability, and appropriate granularity, the re-
sults show that REDAR performs better than User-Label-Item. Af-
ter translating User-Label-Item into our scenario, User-Label-Item
only considers the social attributes of the videos, but ignores the
importance of the users’ content attributes. This makes the learned
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representation difficult to capture the dynamic characteristics of
users’ preferences. Moreover, the REDAR method is more flexi-
ble at incorporating effective priors, such as the social relationship
information.

We also evaluate the methods in Precision@K, and show the re-
sults in Figure 8. We observe that REDAR performs the best in
all testing cases, and the improvement is more obvious when K is
reduced. This is important in real recommendation applications,
where users often only browse the top recommended videos.

5.5 Effects of Regularizers
In order to understand the characteristics and demonstrate the ra-

tionality of REDAR, we evaluate the performances of several vari-
ants of the REDAR model with a leave-one-out strategy. That is,
we remove the factors and regularizers one by one and observe the
change of model performances. The degree of performance degra-
dation indicates the importance and effectiveness of the removed
factor or regularizer. The results are shown in Figure 9. From the
results, we can reach several observations.

(1) The largest degree of performance degradation occurs when
changing REDAR into REDAR-SocialAttribute by removing the
social attribute factor, which means that representing videos with
social attributes is effective in video recommendation scenarios. In
comparison to visual feature-based video representation and sur-
rounding text-based video representation methods, social attribute-
based video representation is at an appropriate granularity. In ad-
dition, it can avoid the semantic gap problem of low-level fea-
tures and the problems brought by the absence of surrounding texts.

More importantly, social attribute-based video representation can
directly account for users’ interaction behaviors on videos.

(2) Although content attribute-based representation produces the
worst results, it complements the social attribute-based representa-
tion method, meaning they can achieve better results together than
they can individually.

(3) All the regularizers imposed to the main regression term play
important roles in addressing the sparsity problem. Comparatively,
the social regularizer is more important than the content regularizer,
which is reasonable because the social influence factor embedded
in social relations is important for predicting user behaviors in a
social network environment [9]. Nevertheless, the non-trivial im-
provement from REDAR-ContentRegularizer to REDAR justifies
the contribution of visual content, which is also demonstrated in
our preliminary study.

5.6 Cold-Start Recommendation Performances
In this subsection, we analyze the capability of REDAR to deal

with new users and videos. We first randomly select 10% of the
users in our dataset as new users, and then hide the historical video
retweeting behaviors from W and use the data of the remaining
users to learn E and F. After that, we apply our incremental ver-
sion ∆REDAR to learn representations for the new users, recom-
mend videos to these new users accordingly, and evaluate the per-
formances of these recommendations. To demonstrate the perfor-
mance of ∆REDAR, we also evaluate the performance of REDAR
on these new users. We deal with new videos in a similar way to
new users.

MAE RMSE Kendall Spearman Time
REDAR 0.2362 0.4338 0.7094 0.8522 4.16h

∆REDAR-V 0.2761 0.4719 0.6892 0.7914 13.30m
∆REDAR-U 0.2913 0.5025 0.6775 0.7745 16.86m

Table 2: Performances of video recommendation for cold-start
users and videos. ∆REDAR-V stands for recommendation of
new videos, and ∆REDAR-U stands for recommendation for
new users.

The results are shown in Table 2. The ∆REDAR can deal with
new users and new videos effectively. Although, undoubtedly, REDAR
performs better than ∆REDAR, the degree of degradation of ∆REDAR
from REDAR is acceptable. Further, by comparing Table 2 and Ta-
ble 1, we can see that the performances of ∆REDAR, which does
not use any user-video interaction, information of these new users
and new videos is still better than other baselines that use this in-
formation. Moreover, the ∆REDAR can also be used for online
processing of new data in an efficient way. In Table 2, the running
time of the incremental processing method ∆REDAR is much less
than that of the offline recommendation REDAR for the same num-
ber of new users and new videos. The running time is reduced from
hours to minutes.

6. CONCLUSION
In this paper, we significantly improved the performance and in-

terpretability of video recommendation systems by learning a com-
mon attribute-based representation for users and videos in social
media with good interpretability, stability, and appropriate granu-
larity. In order to address the critical challenges including the bal-
ance of social attributes and content attributes, the sparsity problem
of user-video interactions, and the cold-start problem, we propose
our REDAR method based on matrix factorization, in which so-
cial attributes and content attributes are flexibly combined, while



social and content information is effectively exploited to alleviate
the sparsity problem. An incremental version of REDAR is also
designed to solve the cold-start problem. The experimental results
show that, in most cases, the proposed method can achieve more
than 20% relative improvement than state-of-the-art baseline meth-
ods.
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