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Abstract—Cascades are ubiquitous in various network en-
vironments. How to predict these cascades is highly nontrivial
in several vital applications, such as viral marketing, epidemic
prevention and traffic management. Most previous works mainly
focus on predicting the final cascade sizes. As cascades are typical
dynamic processes, it is always interesting and important to
predict the cascade size at any time, or predict the time when a
cascade will reach a certain size (e.g. an threshold for outbreak).
In this paper, we unify all these tasks into a fundamental problem:
cascading process prediction. That is, given the early stage of a
cascade, how to predict its cumulative cascade size of any later
time? For such a challenging problem, how to understand the
micro mechanism that drives and generates the macro phenomena
(i.e. cascading process) is essential. Here we introduce behavioral
dynamics as the micro mechanism to describe the dynamic
process of a node’s neighbors getting infected by a cascade after
this node getting infected (i.e. one-hop subcascades). Through
data-driven analysis, we find out the common principles and
patterns lying in behavioral dynamics and propose a novel
Networked Weibull Regression model for behavioral dynamics
modeling. After that we propose a novel method for predicting
cascading processes by effectively aggregating behavioral dynam-
ics, and present a scalable solution to approximate the cascading
process with a theoretical guarantee. We extensively evaluate the
proposed method on a large scale social network dataset. The
results demonstrate that the proposed method can significantly
outperform other state-of-the-art baselines in multiple tasks
including cascade size prediction, outbreak time prediction and
cascading process prediction.

Keywords—Information Cascades, Social Network, Dynamic
Processes Prediction.

I. INTRODUCTION

In a network environment, if decentralized nodes act on
the basis of how their neighbors act at earlier time, these local
actions often lead to interesting macro dynamics - cascades.
In online social networks, the information a user can get and
engage in is highly dependent on what his/her friends share,
and thus information cascades naturally occur and become the
major mechanism for information communication. There has
been a growing body of research on these information cascades
because of their big potential in various vital applications such
as viral marketing, epidemic prevention, and traffic manage-
ment. Most of them focus on characterizing these information

cascades and discovering their patterns in structures, contents
and temporal dynamics.

Recently, predictive modeling on information cascades has
aroused considerable research interests. Earlier works focus
on predicting the final size of information cascades based
on content, behavioral and structural features [3], [6]. As
only large cascades are of interest in most real applications,
Cui et al.[6] propose a data driven approach to predicting
whether the final size will surpass a threshold for outbreak.
More recently, Cheng et al.[3] investigate the problem of
continuously predicting whether the cascade will double the
current size in future. However, the previous works are all
about cascade size, which do not include the whole of in-
formation cascades. Information cascade is a typical dynamic
process, and the temporal scale is critical for understanding
the cascading mechanism. Furthermore, it is highly nontrivial
to predict when a cascade breaks out, and, more ambitiously,
to predict the evolving process of a cascade (i.e. cascading
process, as shown in 1 (a)). In this paper, we move one step
forward to ask: Is the cascading process predictable? That is,
given the early stage of an information cascade, can we predict
its cumulative cascade size of any later time?

It is apparent that the targeted problem is far more chal-
lenging than those in previous works. The commonly used
cascade-level macro features for size prediction, such as the
content, increasing speed and structures in the early stage
are not distinctive and predictive enough for the cascade
sizes at any later time. A fundamental way to address this
problem is to look into the micro mechanism of cascading
processes. Intuitively, an information cascading process can be
decomposed into multiple local (one-hop) subcascades. When
a node involves in a cascade, one or more of its offspring
nodes will also involve in the cascade with a temporal scaling.
If the dynamic process of these subcasades can be accurately
modeled, then the cascade process can be straightforwardly
predicted by an additive function of these local subcascades.

Here we exploit behavioral dynamics as the micro mech-
anism to represent the above mentioned dynamic process of
local subcascades. Given a node involving in a cascade at t0,
its behavioral dynamic aims at capturing the changing process
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(c) Behavioral dynamics of p1

Fig. 1: Illustrations of cascading process prediction. (a) gives the early stage of a cascading process before t. (b) shows
the partially observed cascade, where nodes in green (red) represent the observed (unobserved) nodes involved before
(after) t. (c) portrays the cascading retweeting dynamics of the followers of p1 with respect of time.

of the cumulative number of its offspring nodes that involve
in the cascade with time evolving. By definition, this is a non-
decreasing counting process and can be well represented by
survival model [17]. A paucity of recent research works have
exploited the survival theory to model how the occurrence
of event at a node affects the time for its occurrence at
other nodes (i.e. diffusion rate), and their results demonstrate
the superiority of continuous-time survival model to uncover
temporal processes[11], [18]. However, their targeted problem
is to uncover the hidden diffusion networks, and thus suppose
the parameters of the survival function on each edge to be
fixed. This will cause the unexpected result that all the cascades
with the same root node (or early involved nodes) will be
anticipated to have the same cascading processes, which makes
these models inapplicable in our problem.

In this paper, we propose a novel method for cascading
process prediction, as shown in Figure 1. Given the early stage
of a cascading process before t in Figure 1 (a), we illustrate
the partially observed cascade as shown in Figure 1 (b), where
nodes in green (red) represent the observed (unobserved) nodes
involved before (after) t. Given the behavioral dynamics of
node p1 represented by its survival rates, and the number of
its offspring nodes that have involved before t, we can predict
the cumulative number of its offspring nodes that involve in the
cascade at any time t′ > t. After conducting similar predictions
on all the observed nodes, the cascading process after t can
be predicted by an additive function over all local predictions
from behavioral dynamics.

More specifically, how to model behavioral dynamics and
further predict cascading process based on continuous-time
survival theory also entail many challenges. First, it is unclear
what distribution form the behavioral dynamics follow. Al-
though Exponential and Rayleigh distributions are commonly
used to characterize the temporal scaling of pairwise interac-
tions, behavioral dynamics in this paper are a reflection of
collective behaviors and are proved to be inconsistent with
these simple distributions in real data. Second, the parameters
in survival models are difficult to interpret, which limits the
generality of the learned model. Given the distribution form of
data, the parameters of survival model can always be learned
from real data in maximum likelihood manner. However, it
is unsure what these parameters stands for and the learned

model cannot be generalized to out-of-sample nodes (i.e. the
nodes whose behavioral dynamic data is not included in the
data). Third, the predictive models based on survival theory are
computationally expensive due to the continuous-time charac-
teristic, which makes them infeasible in real applications. How
to design an effective and interpretable model for behavioral
dynamics modeling and a scalable solution for cascading
process prediction are still open issues.

In this paper, we conduct extensive statistical analysis on
large scale real data and find that the behavioral dynamics
cannot be well captured by simple distributions such as
Exponential and Rayleigh distribution, but the general form
of Exponential and Rayleigh, Weibull distribution, can well
preserve the characteristics of behavioral dynamics. Also,
we discover strong correlations between the parameters of a
node’s behavioral dynamics and its neighbor nodes behavioral
features. Enlightened by these, we propose a NEtworked
WEibull Regression (NEWER) model for parameter learning
of behavioral dynamics. In particular, besides the maximum
likelihood estimation term, we also assume the parameters
of a node can be regressed by the behavioral features of its
neighbor nodes and thus impose networked regularizers to
improve the interpretability and generality of the model. Based
on the behavioral dynamics, we further propose an additive
model for cascading process prediction. To make it scalable,
we propose an efficient sampling strategy for approximation
with a theoretical guarantee.
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Fig. 2: Showcase of cascading process prediction for a
real cascade. The red line represents the groundtruth
cascading process. The others are prediction results based
on different early stage information.



We extensively evaluate the proposed method in a com-
plete dataset from a population-level social network in China,
including over 320 million users, 1.2 billion edges and 340
million cascades . In all the testing scenarios, the proposed
method can significantly outperform other baseline methods.
Figure 2 is a showcase of cascading process prediction by
the proposed method. We show that by accurately modeling
behavioral dynamics of social network users, we can predict
the whole cascading process with only early 30 percent cascade
information, and get the average precision of 0.85 with 20%
error tolerance. Also, the accurate predictions of final cascade
size, cascade outbreaking time are all implied in the predicted
cascading process.

The main contributions of this paper are:

(1) Enlightened by the cascading size prediction works, we
move one step forward to attempt cascading process prediction
problem, which implies several vital problems such as cascade
size prediction, outbreaking time prediction as well as evolving
process prediction.

(2) We find out the common principles and patterns ly-
ing in behavioral dynamics and propose a novel NEtworked
Weibull Regression model for behavioral dynamics modeling
accordingly, which significantly improves the interpretability
and generality of traditional survival models.

(3) We propose a novel method for predicting macro
cascading process by aggregating micro behavioral dynamics,
and propose a scalable solution to approximate the cascading
process with a theoretical guarantee.

II. RELATED WORK

Prediction on Cascades. In recent years, many methods have
been proposed to make prediction on cascades. Most of them
focus on predicting the future size of a cascade, and the
common way is to select vital nodes and place sensors on
them. For example, Cohen et al. [4] focus on exploring the
topological characteristics of the cascade. Cui et al. [6] pro-
poses to optimize the size prediction problem using dynamic
information. Cheng et al. [3] introduces temporal feature into
the problem and they predict the growing size of the cascade.
Rather than attempt to predict the cascade size, we focus on
predicting the cascading process which considers both time
and volume information together.

Survival Model. Survival model is a method try to analysis
things according to the time duration until one or more
events happen. In recent years, researchers started modeling
information diffusion using continuous models. Myers et al.
[15] proposed CONNIE to infer the diffusion network base
on convex programming while leaving the transmission rate
to be fixed, later on Rodriguez et al.[18] proposed NETRATE
which allowing the transmission rate to be different in different
edges. Subsequently, Rodriguez et al. [11] give an additive
model and a multiplicative model to describe information
propagation base on survival theory. Most of these works focus
on discovering the rules and patterns to the edges in the social
network and is hard to extend to make predictions for cascades
since the correlation between transmission rates on edges is
little. In contrast, our work focus more on predictive modeling
by grouping correlated edges together so that we can make
predictions for edges base on the information of other edges.

Influence Modeling and Maximization. Influence modeling
and maximization aims to evaluate users’ importance in social
networks. This is first proposed by Domingos et al. [8] to select
early starters to trigger a large cascade. Then Kempe et al. [13]
proposed Stochastic Cascade Model to formalize the problem
and Chen et al. [2] proposed a scalable solutions. Recently
the approach was extended to adding opinion effects [1], [10],
topic effects [7] or time decay effects [19] on the models. Our
work is distinct from existing works in the following way:
Rather than quantify the influence on nodes, we will predict
the cascading process.

III. PRELIMINARIES

This section presents the dataset information, discovered
patterns and validated hypothesises to support the model
design and solution.

A. Dataset Description
The dataset in this paper is from Tencent Weibo, one of

the largest Twitter-style websites in China. We collect all the
cascades in 10 days generated between Nov 15th and Nov
25th in 2011. The dataset contains in total 320 million users
with their social relations, 340 million cascades1 with their
explicit cascading processes. The distribution of cascade size
is shown in Figure 3. We can see that the cascade size follows
Power-Law distribution, and the majority of cascades have very
small size, which are not of interest for many applications.
As the paper intends to predict cascading process, we filter
out the cascades with the size of less than 5, and maintain
the remaining 0.59 million cascades with obvious cascading
process for statistical analysis and experiments.
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Fig. 3: Distribution of cascade size. The red straight line is
the linear fitting result to the blue curve, showing the size
distribution fits power-law.

B. Characteristics of Behavioral Dynamics
As mentioned before, behavioral dynamics play a central

role in uncovering and predicting cascade processes. Here we
investigate the characteristics of behavioral dynamics to en-
lighten the modeling of behavioral dynamics. By definition, the
behavioral dynamics of a user capture the changing process of
the cumulative number of his/her followers retweet a post after
the user retweeting the post. Then the behavioral dynamics of

1Here the cascades are information cascades. When a user retweet/generate
a post, several of his/her followers will further retweet the post and so on so
forth to form a information cascade.



TABLE I: Parametric Models

model density function survival function hazard function ks-static in Weibo
Exponential λie

−λit e−λit λi 0.2741

Power Law αi
δ

(
t
δ

)−αi−1 (
t
δ

)−αi αi
t 0.9893

Rayleigh αite
−αi

t2

2 e−αi
t2

2 αit 0.7842

Weibull ki
λi

(
t
λi

)ki−1
e
−
(
t
λi

)ki
e
−
(
t
λi

)ki
ki
λi

(
t
λi

)ki−1
0.0738

a user can be straightforwardly represented by averaging the
size growth curve of all subcascades that spread to the user
and his/her followers. However, Figure 4 shows that the size
growth curves vary significantly for different subcascades of
the same user, which means that such a representation is not
fit to characterize behavioral dynamics. Here we normalize
the size growth process by the cascade final size and adopt
survival function to describe the behavioral dynamics where
the survival rate represents the percentage of nodes that has
not been but will be infected. As shown in Figure 4, a
user’s survival function is quite stable for different subcascades
although their size growth patterns vary.
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Fig. 4: The size growth curves and their corresponding
survival function for 3 users.

Then can we use the behavioral dynamics represented by
survival function to predict the size growth curve of a subcas-
cade? We provide positive answer with the assistance of early
stage information. For example, if we know the subcascade
size at an early time t0, then the survival function can be
straightforwardly transformed from percentage dimension into
size dimension.
C. Parametrize Behavioral Dynamics

For the ease of computation and modeling, we need to
parameterize the behavioral dynamics in our case. In state-
of-the-art, Exponential and Rayleigh distributions are often
used to describe the dynamics of user behaviors in different
settings [9], [12]. Here we testify these distribution hypothesis
on our real data and find that these distributions cannot well
capture both the shape and scale characteristics of behavioral
dynamics. Thus, we turn to the general form of Exponential
and Rayleigh distributions, the Weibull distribution [16], and
find it adequate for parameterizing behavioral dynamics. In
order to quantify the effect of parametrization, we calculate
KS-Statistic for the three candidate distributions as shown
in Table I. It displays that Weibull distribution performs
much better than Exponential and Rayleigh distribution. The
improvement is attributed to the high degree of freedom of
Weibull distribution as it has two parameters λ and k to
respectively control the scale and shape of the behavioral
dynamics.
D. Covariates of Behavioral Dynamics

If subcascades for all users are sufficient, the parameters of
behavioral dynamics can be directly learned from data. How-
ever, this suffers from several drawbacks: (1) some users may

TABLE II: Behavioral features and structural for users.

Behavioral features
inflowrate the number of the posts user received in a certain period.
outflowrate the number of the posts user sent in a certain period.

average inflow rate of followers to the user, or
inflowrateavg

F (i)

∑
i retweet(i)·inflow(i)∑

i retweet(i)
where F (u) is the follower

to user i (and the same as following).
retweetrateavg

F (u)
average retweet rate of followers to the user, or∑
i retweet(i)·retweetrate(i)∑

i retweet(i)
.

Structural features
follower number number of the followers to the user.
followee number number of users this user follows.

have no or very sparse subcascade in training dataset, which
makes these users’ behavioral dynamics inaccurate or even
unknown; (2) it is difficult to interpret the parameters directly
learned from data, which prohibits us from getting insightful
understanding on the behavioral dynamics. To address these,
we investigate the covariates of behavioral dynamics here. As
the behavioral dynamics of a user are to capture the collective
responses of his/her followers, we assume the parameters of
the user’s behavioral dynamics should be correlated with the
behavioral features of his/her followers (network neighbors).
Hence, we extract a set of behavioral features for each user
as listed in Table II.2 For each user with enough subcascades
in our dataset, we learned their λ and k directly from data.
And then, we calculate the correlations between the learned
parameters and their followers’ collective behavioral features.
The examples given in Figure 5 indicate obvious correlations
between the learned parameters with these behavioral features.
Therefore, we can use these behavioral features as covariates
to regress the parameters of behavioral dynamics.
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Fig. 5: Correlations between the survival function param-
eters and the behavioral features

2We think that follower with different retweet number will have dif-
ferent effects to the user, so we modify the weights on each term of
follower avg inflow rate and follower avg retweet rate.



E. From Behavioral Dynamics to Cascades
After validating that the behavioral dynamics can poten-

tially be accurately modeled and predicted, the key problem is
whether we can derive the macro cascading process from micro
behavioral dynamics. Intuitively, the cascading process cannot
be perfectly predicted at early stage by behavioral dynamics.
Given any time t, we can only use the behavioral dynamics of
the users that involved before t to predict the cascading process
after t. Consequently, the prediction coverage is restricted to
all the followers of these users, while the users beyond this
scope are neglected. These uncovered users may potentially
affect the performance of cascading process prediction.

Fortunately, we observe two interesting phenomenons in
real data.

Minor dominance. Although each user has behavioral
dynamics, the behavioral dynamics of different users make
significantly different contributions to the cascading process.
It is intuitive that the behavioral dynamics of an active user
with 1 million followers contribute much more than that of an
inactive user with 5 followers. The data also coincides with
our intuition. According to Figure 6 (a), it can be observed
that a very small number of nodes whose behavioral dynamics
dominate the cascading process underpin the idea of just using
the behavioral dynamics of these dominant nodes for cascading
process prediction.

Early stage dominance. Enlightened by the minor dom-
inance phenomenon, we further ask whether the dominant
nodes are prone to join cascades in early stage. Here, Figure
6 (b) depicts the time distribution of these dominant nodes
joining in cascades, and we can see that most of these nodes
in actual join cascades in the very early stage.
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Fig. 6: Minor dominance and early stage dominance in
information cascades.

Taking these two phenomena into account together, it is
safe to design a model exploiting the behavioral dynamics of
infected nodes in early stage to predict the cascading process.

IV. METHODOLOGY

This section introduces the NEtworked WEibull Regression
(NEWER) and cascade prediction methods in detail.

A. Problem Statement
Given a network G = 〈U,A〉, where U is a collection

of nodes and A is the set of pairwise directed/undirected
relationships. An event (e.g., tweet) can be originated from
one node and spread (e.g., by retweeting) to its neighboring
nodes. A cascade is typically formed by repeating this

process. Therefore, a cascade can be represented by a set of
nodes C = {u1, u2, ...um}, where u1 is the root node. In a
cascade, each node will get infected by the event only once,
so it is tree-structured. For every node ui in the cascade, we
denote its parent node as rp(ui). The time stamp that ui
gets infected is t(ui), and t(ui) ≤ t(ui+1). Then the partial
cascade before time t is denoted by Ct = {ui|t(ui) ≤ t}, and
its size size(Ct) = |Ct| where |.| is the cardinality of a set.
Then the cascade prediction problem can be defined as:

Cascade Prediction: Given the early stage of a cascade Ct,
predict the cascade size size(Ct′) (t′ ≥ t).

B. Survival Analysis

Survival analysis is a branch of statistics that deals with
analysis of time duration until one or more events happen,
such as death in biological organisms and failure in mechanical
systems [14]. It is a useful technique for cascade prediction.
More concretely, let τ0 be a non-negative continuous random
variable representing the waiting time until the occurrence of
an event with probability density funtion f(t), the survival
function

S(t) = Pr{τ0 ≥ t} =

∫ ∞
t

f(t) (1)

encodes the probability that the event occurs after t, the hazard
rate is defined as the event rate at time t conditional on survival
until time t or later (τ0 ≥ t), i.e.,

λ(t) = lim
dt→0

Pr(t ≤ τ0 < t+ dt|τ0 ≥ t)
dt

=
f(t)

S(t)
(2)

S(t) and λ(t) are the two core quantities in survival
analysis.

C. NEtworked WEibull Regression Model

The Weibull distribution is commonly used in survival
analysis. In network scenario, if we think the time that an
event (e.g., retweet) happened on a node as a survival process,
we can fit a Weibull distribution to the survival time of node i,
then its corresponding density, survival and hazard functions

fi(t) =
ki
λi

(
t

λi

)ki−1
exp
−
(
t
λi

)ki
(3)

Si(t) = exp
−
(
t
λi

)ki
(4)

hi(t) =
ki
λi

(
t

λi

)ki−1
(5)

where t > 0 is the average event happening time to node i,
λi > 0 and ki > 0 is the scale and shape parameter of the
Weibull distribution. In the following we will assume the
network nodes are users and the event is retweeting.

Likelihood of retweeting dynamics. Supposing there are N
users in total, Ti is a set of mi time stamps and each element
Ti,j indicates the j-th retweet time stamp to the post of the
i-th user. We sort those time stamps out in increasing order so
that Ti,j+1 > Ti,j . We assume Ti,j ≥ 1 and Ti,mi > 1. Then
the likelihood of the event data can be written as follows:



L(λ, k) =

N∏
i=1

mi∏
j=1

(hi(Ti,j) · Si(Ti,j))

=

N∏
i=1

mi∏
j=1

(
ki · T ki−1i,j · λ−kii · e−T

ki
i,j ·λ

−ki
i

)
(6)

logL(λ, k) =

N∑
i=1

li(λi, ki) (7)

where li(λi, ki) = mi log ki + (ki − 1)
∑mi
j=1 log Ti,j−

miki log λi − λ−kii

∑mi
j=1 T

ki
i,j .

As discovered in section III-D, the survival characteristics
of the user is correlated with the behavioral features of him/her.
Then we can parameterize those parameters in the personalized
Weibull distributions using those behavioral features. More
formally, let xi be a r dimensional feature vector for user i,
we parameterize λi and ki with the following linear function:

log λi = log xi ∗ β (8)
log ki = log xi ∗ γ (9)

where β and γ are r-dimensional parameter vector for λ and
k. We attempt to find the scale and shape parameter of every
user so that the likelihood of the observed data is maximized,
at the same time we can also get the parameter vectors for
out-of-sample extensions.

We use the Equation (8) and (9) to replace λi and ki in the
log likelihood function Equation (7) to solve the parameters.
To further enhance the interpretability, we also add `1 sparsity
regularizers on β and γ respectively to enforce model sparsity.
Combining everything together, we can obtain the NEtworked
WEibull Regression (NEWER) formulation which aims to
minimize the following objective:

F (λ, k, β, γ) = G1(λ, k) + µG2(β, λ) + ηG3(γ, k) (10)
G1(λ, k) = − logL(λ, k) (11)

G2(λ, β) =
1

2N
‖log λ− logX · β‖2 + αβ ‖β‖1 (12)

G3(k, γ) =
1

2N
‖log k − logX · γ‖2 + αγ ‖γ‖1 (13)

Optimization. To minimize F (λ, k, β, γ) in Equation (10),
we first prove that the function is lower bounded. We have
the following theorem.

Theorem 1: F (λ, k, β, γ) has global minimum.

Proof: See the appendix.
With this theorem, the following coordinate descent strat-

egy can be used to solve the problem with guaranteed conver-
gence. At each iteration, we solve the problem with one group
of variables with others fixed.

For it = 1, . . . , itmax

λ[it+1] = argminλF (λ, k[it], β[it], γ[it])

k[it+1] = argminkF (λ[it+1], k, β[it], γ[it])

β[it+1] = argminβF (λ[it+1], k[it+1], β, γ[it])

γ[it+1] = argminγF (λ[it+1], k[it+1], β[it+1], γ)

(14)

For solving the subproblem with respect to λ or k, we use
Newton’s Method. For subproblem with respect to β and γ,
we use standard LASSO solver [20].

D. Efficient cascading process prediction
It should be born in mind that cascading prediction is

intended to perform early prediction of its size at any later
time. In the following we will present two models to achieve
this goal.

1) Basic Model: The entire flow of the basic model we
proposed is illustrated in Algorithm 1:

Algorithm 1 Basic Model
Input:

Set of users U involved in the cascade C before time tlimit,
survival functions of users Suj (t), predicting time te;

Output:
Size of cascade size (Cte);

1: for all user ui ∈ U do
2: creates a subcascade process with replynum(ui) = 0
3: if ui is not root node then
4: replynum(rp(ui)) = replynum(rp(ui)) + 1
5: end if
6: end for
7: sum = 1
8: for all user ui ∈ U do
9: deathrate(ui) = max

(
1− Sui(tlimit − t(ui)), 1

|V |

)
10: fdrate(ui) = max

(
1− Sui(te − t(ui)), 1

|V |

)
11: sum = sum+ replynum(ui)·fdrate(ui)

deathrate(ui)

12: end for
13: return size (Cte) = sum

When a new node ui is added into the cascade at t(ui), the
algorithm will launch a process to estimate the final size of the
subcascade that ui will generate, with temporal size counter
replynum(ui) and survival function Sui(t) starting at t(ui).
If ui is involved by others, the algorithm also increases the
temporal size of the retweet set of its parent rp(ui) by one.

After all the information before the deadline is collected,
the result will be finalized by aggregating all the value es-
timated by every subcascade process. Since the post number
is at most |V | (all nodes in the network are involved into the
cascade), the value of death rate deathrate(ui) and final death
rate fdrate(ui) (complement to their survival rates) at line 9
and line 10 is set to be 1/|V | when it is lower than 1/|V |.

Complexity Analysis. Only constant time operations is in-
volved in the two for-loops. Therefore, the complexity of the
algorithm is O(n) where n is the number of users in the
cascade.

2) Sampling Model: Although the basic model solves the
estimation problem, real applications often need to estimate the
cascade size dynamically so that the changes can be monitored.

To make the algorithm scalable, the number of recalcu-
lations should be limited, while the estimated value of size
should fall into an acceptable error scope. We can utilize
the following two facts to make the estimation process more
efficient: (1) For a subcascade generated by ui, the estimation
of the size will always be zero if there is no user involved
into it, which means we can ignore the calculation. (2) If we



do not re-estimate the final number of a subcascade (when
there is no new user involved into it), the temporal size
counter replynum(ui) and final death rate edrate(ui) will not
change but the death rate deathrateui(t) will increase over
time. Supposing the previous time stamp of the subcascade
set estimation is t0, it will cause a relative error rate of
deathrateui (t1)

deathrateui (t0)
−1 at t1. Hence, the relative error rate will be at

most ε if we re-estimate the final number of the subcascade at
S−1u (1− (1 + ε) · (deathrateui(t0))). By exploring those two
tricks, we propose a sampling model shown in Algorithm 2:

Algorithm 2 Sampling Model
Input:

survival functions of users Suj (t), and set of users U in one
cascade C(given dynamically);

Output:
for every size prediction request to te at t0, output size (Cte);

1: sum = 0;
2: while request = model.acceptRequest do
3: switch (request.type)
4: case APPROXIMATION:
5: return size (Cte) = sum
6: case INVOLVED USER:
7: ui=request.user, t0=request.time
8: creates a subcascade process:

t(ui) = t0, app(ui) = 0, replynum(ui) = 0,
fdrate(ui) = max

(
1
|V | , 1− Srp(ui)(te − t0)

)
;

9: if ui is root node then
10: sum = 1;
11: else
12: trep = t0 − t (rp(ui));
13: replynum(rp(ui)) = replynum(rp(ui)) + 1;
14: sum = sum− app(rp(ui));
15: deathrate(rp(ui)) =

max
(

1
|V | , 1− Srp(ui)(trep)

)
;

16: app(rp(ui)) =
replynum(rp(ui))·fdrate(rp(ui))

deathrate(rp(ui))
;

17: sum = sum+ app(rp(ui));
18: tnew = S−1

rp(ui)
(1− (1 + ε) · deathrate(rp(ui)))

+t(rp(ui));
19: sendRequest(THRESHOLD CHANGE,rp(ui),tnew);
20: end if
21: case THRESHOLD CHANGE:
22: ui = request.user, t0=request.time
23: sum = sum− app(ui);
24: deathrate(ui) = max

(
1
|V | , 1− Sui(t0 − t(ui))

)
;

25: tnew = S−1
ui (1− (1 + ε) · deathrate(ui)) + t(ui);

26: sendRequest(THRESHOLD CHANGE,ui,tnew);
27: app(ui) =

replynum(ui)·fdrate(ui)
deathrate(ui)

;
28: sum = sum+ app(ui);
29: end switch
30: end while

Complexity Analysis. The following theorem analyzes the
complexity of Algorithm 2.

Theorem 2: With an overall O(n log1+ε(|V |)) counting to
estimate the number of subcascades, the sampling model can
approximate the size of the cascade estimated by the basic
model at any time with an relative error rate of at most ε.

Proof: For each approximation request, we only need
to report the number directly; for every new subcascade, the
initially operation number is also constant, and we need to
do at most O(log1+ε(|V |)) times threshold adjustment for

subcascade which has users involved in, since the lowerbound
of deathrate is 1

|V | and the upperbound is 1(all the people
are involved in the cascade). Above all, the final complexity
is O(t) + O(n) + O(n log1+ε(|V |)) = O(t + n log1+ε(|V |))
for each cascade (with n users and t requests). If we put this
algorithm into an online environment, the complexity will be
O(T + N log1+ε(|V |)) ∼ O(T ) for all the cascades with N
Users in total3 (we see log1+ε(|V |) as a constant with respect
to T and N ∼ T as the number of users involved in cascades
increases over time).

With this model, for cascade final size prediction, we just
need to set the prediction time te to be infinite so that the
deathrate of all subcascades will be 1. For outbreak time
prediction, we can make a binary search with respect to time
te, checking whether the cascade size will be more or less than
the size number at tmid and make the decision eachtime. We
can also solve the process prediction problem by asking the
outbreak time of size restricted from the current size to the
final size of the cascade one by one. In all cases, the sampling
model will be n times faster than the base model.

V. EXPERIMENTS

In order to evaluate the performances and fully demonstrate
the advantages of the proposed method, we conduct a series
of experiments on the dataset introduced in Section III-A. The
results of multiple tasks are reported, including cascade size
prediction, outbreak time prediction and cascading process pre-
diction. Also, it will address more insights about the proposed
method.

A. Baselines and Evaluation Metrics
Since we are the first to investigate cascading process

prediction problem, no previous models can be adopted as
direct baselines. Here, we implemented the following methods
which can be potentially applied into our targeted problem as
baselines:

• Cox Proportional Hazard Regression Model (Cox) :
This model assumes that the behavioral dynamics of
all users have different scale parameters while sharing
the same shape parameter. We use the same covariates
as in our model and find the optimal scale parameters
for all users and the shared shape parameter. We
implement it as in [5].

• Exponential/Rayleigh Proportional Hazard Regression
Model (Exponential/Rayleigh): Since the shape pa-
rameters of both Exponential and Rayleigh distribu-
tions are fixed values (1 for Exponential distribution
and 2 for Rayleigh distribution), they are two special
cases of Cox model.

• Log-linear Regression Model (Log-linear): We refer to
[3] which extracted 4 classes features to characterize
cascades, including node features, structural features
of cascades, temporal features and content features. In
our case, we ignore the content features which are not
covered in our dataset and also reported by [3] to be
unimportant for cascade prediction. Then we use log-
linear regression model to predict the cascade size.

3It will be counted multiple times if a specific user involves in multiple
cascades



It is noted that Log-linear can only predict cascade size
but not for time-related prediction, while Cox, Exponential and
Rayleigh models are applied to all prediction tasks. Also, the
goal of Cox, Exponential and Rayleigh models are to elucidate
the behavioral dynamics. After that, we use the same cascade
prediction model as in our method to conduct cascade-level
predictions.

For each cascade, our dataset includes its complete cas-
cading process as the groundtruth. Next, we use the following
metrics to evaluate the performances:

• Root Mean Square Log Error (RMSLE): In Power-
Law distributed data, it is not reasonable to use
standard RMSE to evaluate the prediction accuracy.
For example, for a cascade with the groundtruth size
of 1000, it is significantly different to predict its size
to be 2000 or 0, but they have the same RMSE. Thus,
we first calculate the logarithmic results for both the
groundtruth and predicted value, then calculate RMSE
on the logarithmic results to evaluate the accuracy of
the proposed method and baselines.

• Precision with σ-Tolerance (∆σ-Precision): In real
applications, a small deviation from the groundtruth
value is often acceptable. In our case, we re-
gard the predicted value within the range of (1 +
σ)±1groundtruth as tolerable, and the resulted pre-
cision is ∆σ-Precision.

For parameter setting, there are 4 parameters in our method,
including µ, η, αβ and αγ . We tune these parameters by grid
searching, and the optimal parameters used in our experiments
are µ = 10, η = 10, αβ = 6 ∗ 10−5, αγ = 8 ∗ 10−6.

B. Cascade Size Prediction

20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

1.4

Observation Number

R
M
S
L
E

Cascades with size at least 300

50 100 150 200 250 300
0.2

0.4

0.6

0.8

1

1.2

1.4

Observation Number

R
M
S
L
E

Cascades with size at least 600

100 200 300 400 500
0.2

0.4

0.6

0.8

1

1.2

1.4

Observation Number

R
M
S
L
E

Cascades with size at least 1000

 

 

NEWER cox exp rayleigh log−linear

Fig. 7: RMSLE results of different methods with different
number of observed nodes in cascades. We did not show
log-linear results in the first sub-figure since their RMSLE
value are all greater than 1.5.

We randomly separate the cascades into 10 folds, and
conduct a 10-fold cross validation by using 9 of them as
training data and the other one as testing data. For cascades
with size over k, we use the first s(s < k) nodes as observed
data, and the target is to predict the final cascade sizes.

The prediction performances of all the methods are shown
in Figure 7. It can be seen that the proposed method NEWER
significantly outperforms other baselines in RMSLE value
in different sized datasets. The baselines that has the closest
performance with NEWER is the Cox model. We can see
that the margins of improvement from Cox to NEWER are
more obvious in the dataset with larger k. In a certain dataset,
the margins are more evident with smaller s. These results

TABLE III: Running time for different methods in different
dataset under a server with 3.4GHZ Quad Core Intel i7-
3770 CPU and 16GB memory.

Method Base Improved Directed
Model Model (δ = 0.1) Learning Method

Size ≥ 20 8.47 ∗ 105s 10.73s 899s
Size ≥ 50 7.61 ∗ 105s 8.62s 899s
Size ≥ 100 6.65 ∗ 105s 7.09s 898s
Size ≥ 500 4.35 ∗ 105s 4.33s 891s
Size ≥ 1000 3.4 ∗ 105s 3.30s 881s

demonstrate the significant advantage of NEWER in predicting
large cascades in very early stage.

Comparatively, the Log-linear method does not achieve
satisfactory results in this task. The main reason is that the
coefficients in the Log-linear model are highly biased towards
the dominant number of small-sized cascades, which is also
argued by [3]. In our method, we successfully overcome this
bias by shifting from macro cascade level features to micro
behavioral dynamics. The substantial gain achieved by all
behavioral dynamics based methods (including NEWER, Cox,
Exponential and Rayleigh) exemplifies the importance of this
micro mechanism for cascade prediction.

In order to demonstrate the efficiency of the proposed
method, we also evaluate the computational cost of NEWER
and Sampling-NEWER in the computational environment with
3.4GHZ Quad Core Intel i7-3770 and 16GB memory. We
track the process of all cascades. The base cascade prediction
model (Base) re-predicts the final size at every time points (in
second), while the sampling-based cascade prediction model
(Sampling) re-predicts the final size only when the observed
cascade sizes increase. As shown in Table III, the Sampling
model (with a 10 percent performance degradation tolerance) is
much more efficient than Base model by almost 5 magnitudes.
According to Section IV-D, it is guaranteed that the Sampling
method can also improve with similar magnitudes than the
Base model in cascading process prediction task. So we omit
these results for brevity.

C. Outbreak Time Prediction
Another interesting problem is to predict when a cascading

outbreak will happen. For example, in the early stage of a cas-
cade, can we predict when the cascade reaches a specific size?
Without loss of generality, we set the outbreak size threshold to
be 1000. We evaluate the prediction performance with different
number of observed nodes in the cascades. As shown in Figure
8, the NEWER model get the best performances in both
RMSLE and ∆σ-Precision metrics. Although Exponential
and Rayleigh models report better results than NEWER in very
early stage (less than 50 observation nodes), the improvements
of their performances with increasing number of observed
nodes are not as significant as NEWER.

D. Cascading Process Prediction
The ultimate purpose of this paper is to predict the cas-

cading process. For each cascade, we use ∆t to represent the
early stage window and t̂ to represent its ending time. Then
we use the cascade information during [0,∆t] to predict the
cascading process during [∆t, t̂]. At any time t ∈ [∆t, t̂], we
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Fig. 8: Outbreak time prediction results of different meth-
ods with different number of observed nodes in cascades.

calculate whether the predicted cascade size at t is within the
σ tolerance of the groundtruth size at t. Then we calculate
the ∆σ-Precision by integrating t to describe the prediction
accuracy for this cascading process. Finally, we average the
∆σ-Precision for all cascades and show the results in Figure
9. Here, we vary the early stage percentage (i.e. ∆t/t̂) from
0 to 50%, and discover that in all the settings of early stage
percentage, NEWER always carries out the best performances
in cascading process prediction. More over, the advantage
of NEWER is more clear in smaller early stage percentage.
When we set the early stage to be 15% of the whole cascade
duration, we can get the ∆0.2-Precision of 0.849. That means
that we can correctly predict the cascade sizes at 84.9%
time points, which indicates that the cascading process is
predictable and the proposed method is adequate and superior
in cascading process prediction. Furthermore, changing the
precision tolerance value σ will not affect the relative results of
all the methods in our experiments, and the precision value will
be smaller when setting σ smaller. For abbreviation, we only
report the results of σ = 0.2, which is a reasonable tolerance
in most application scenarios.
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Fig. 9: Cascading process prediction accuracy of different
methods under different early stage percentage settings.

E. Out-of-sample Prediction
In real applications, the interaction information between

nodes is not always available, which makes some nodes’
behavioral dynamics cannot be directly derived by maximum
likelihood estimation from data. We call these nodes as out-
of-sample nodes. This is the main reason why we propose
NEWER to incorporate the covariates of behavioral dynamics.
In order to evaluate the performance of NEWER in handling
this case, we simulate the scenario by hiding the interaction
information of randomly selected 10% users as out-of-sample

users, and then predict the final sizes of the cascades that these
users involved in early stages.
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Fig. 10: Prediction result by unknown users.
In Cox model, the scale parameters in behavioral dynamics

of out-of-sample users can be regressed by the covariates. For
the shape parameter, we calculate the average value of shape
parameters in observed users and apply this value to the shape
parameters of out-of-sample users. In NEWER model, both of
shape and scale parameters can be regressed by covariates with
the learned β and γ. We also employ the standard Weibull
Regression (Wbl) as a baseline, which can be derived by
simply setting µ and η to be 0 in Equation 10. Then we use
the averaged shape and scale parameters of observed users as
the parameters of out-of-sample users.

As shown in Figure 10, the NEWER model can signifi-
cantly and consistently outperform Cox and Wbl models in
out-of-sample prediction, which demonstrates that the discov-
ered covariates from behavioral features of a user’s networked
neighbors can effectively predict the user’s behavioral dynam-
ics. Also, we visualize the regression coefficients β and γ in
Figure 11. It can be observed that the behavioral features of
a user’s followers plays more important roles in predicting
both scale and shape parameters for the user, while the user’s
structural features are less important.
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Fig. 11: Parameter coefficients for scale and shape param-
eter.

VI. CONCLUSIONS

In this paper, we raise an important and interesting ques-
tion: beyond predicting the final size of a cascade, can we
predict the whole cascading process if the early stage infor-
mation of cascades is given? In order to address this problem,
we propose to uncover and predict the macro cascading
process with micro behavioral dynamics. Through data-driven
analysis, we find out the common principles and important
patterns laying in behavioral dynamics, and propose a novel
NEWER model for behavioral dynamics modeling with good
interpretability and generality. After that, we propose a scalable
method to aggregate micro behavioral dynamics into macro
cascading processes. Extensive experiments on a large scale



real data set demonstrate that the proposed method achieves
the best results in various cascading prediction tasks, including
cascade size prediction, outbreak time prediction and cascading
process prediction.
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APPENDIX: PROOF OF THEOREM 1

Proof: It’s evident that both G2(β, λ) and G3(γ, k) has global
minimum value. Next we prove that G1(λ, k) also has global mini-
mum value, or to prove logL(λ, k) has global maximum value.

Let λ′i = λ−kii , logL′(λ′, k) = logL(λ, k) =
∑N
i=1 l

′
i(λ
′
i, ki)

where l′i(λ
′
i, ki) = mi log ki+(ki− 1)

∑mi
j=1 log Ti,j +mi log λ

′
i−

λ′i
∑mi
j=1 T

ki
i,j , the partial derivatives of the l′i are given by:
∂l′i
∂λ′i

=
mi

λ′i
−

mi∑
j=1

T kii,j ,
∂2l′i
∂λ′2i

= −mi

λ′2i
< 0 (15)

∂l′i
∂ki

=
mi

ki
+

mi∑
j=1

log Ti,j − λ′i
mi∑
j=1

T kii,j log Ti,j (16)

∂2l′i
∂k2i

= −mi

k2i
− λ′i

mi∑
j=1

T kii,j (log Ti,j)
2 < 0 (17)

Since ∂2l′i
∂λ′2i

< 0 and ∂2l′i
∂k2i

< 0, the conditional marginal posterior
densities of parameters λ′i and ki are log-concave. Moreover, when

0 < ki < 1, 0 < λ′i < min

(
mi∑mi
i=1 T

ki
i,j

, 1∑mi
j=1 Ti,j log Ti

)
,

∂l′i
∂λ′i

=
mi

λ′i
−

mi∑
j=1

T kii,j ≥
mi
mi∑mi
i=1 T

ki
i,j

−
∑
j=1

miT
ki
i,j = 0 (18)

∂l′i
∂ki

=
mi

ki
+

mi∑
j=1

log Ti,j − λ′i
mi∑
j=1

T kii,j log Ti,j

≥ mi

ki
+

mi∑
j=1

log Ti,j −
∑mi
j=1 T

ki
i,j log Ti,j∑mi

j=1 Ti,j log Ti
≥ mi +

mi∑
j=1

log Ti,j − 1 > 0

when ki ≥ max

(
1, mi

λ′i
∑mi
j=1 Ti,j log Ti,j−

∑mi
j=1 log Ti,j

)
and λ′i ≥

max

(
1, mi∑mi

j=1 T
ki
i,j

)
,

∂l′i
∂λ′i

=
mi

λ′i
−

mi∑
j=1

T kii,j ≤
mi
mi∑mi
i=1 T

ki
i,j

−
∑
j=1

miT
ki
i,j = 0 (19)

∂l′i
∂ki

=
mi

ki
+

mi∑
j=1

log Ti,j − λ′i
mi∑
j=1

T kii,j log Ti,j

≤ mi
mi

λ′i
∑mi
j=1 Ti,j log Ti,j−

∑mi
j=1 log Ti,j

+

mi∑
j=1

log Ti,j − λ′i
mi∑
j=1

T kii,j log Ti,j

= λ′i

mi∑
j=1

Ti,j log Ti,j −
mi∑
j=1

log Ti,j +

mi∑
j=1

log Ti,j − λ′i
mi∑
j=1

T kii,j log Ti,j

< 0 (20)

which means there should be a global maximum of l′i, so does logL.
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